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Abstract

Given an edge weighted graph G = (V, E), the maximum bisection problem
involves partitioning the vertices of V' into two disjoint subsets of equal cardinal-
ity such that the weight sum of the edges crossing the two subsets is maximized.
In this study, we present an Iterated Tabu Search (ITS) algorithm to solve the
problem. ITS employs two distinct search operators organized into three search
phases to effectively explore the search space. Bucket sorting is used to ensure
a high computational efficiency of the ITS algorithm. Experiments based on
71 well-known benchmark instances of the literature demonstrate that ITS is
highly competitive compared to state-of-the-art approaches and discovers im-
proved best-known results (new lower bounds) for 8 benchmark instances. The
key ingredients of the algorithm are also investigated.

Keywords: Max-bisection, graph partition, multiple search strategies, tabu
search, heuristics.

1. Introduction

Given an undirected graph G = (V, F) with a set of vertices V = {1,...,n},
a set of edges E C V x V and a set of edge weights {w;; € Z : {i,j} € E}
(wij = 0if {4,5} ¢ E). The maximum bisection problem (max-bisection for
short) aims to partition the vertex set V' into two disjoint subsets S; and Sy of
equal cardinality (i.e., S;USy =V, S1NSy = 0,]S1| = |Sa]|), such that the weight
sum of the edges whose endpoints belong to different subsets is maximized, i.e.,
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max Z Wi j - (1)
1€S51,j€S2

Max-bisection is a classical NP-hard combinatorial optimization problem and
cannot be solved exactly in polynomial time unless P = NP [31]. Moreover,
when the equal cardinality constraint is relaxed, the problem is referred to as
the maximum cut problem (max-cut) whose decision version is one of Karp’s 21
NP-complete problems [22]. Both max-bisection and max-cut have been subject
of many studies in the literature.

In particular, max-bisection has attracted increasing attention in recent
decades due to its relevance to numerous applications like VLSI layout design
[2, 8, 9], data clustering [14] and sports team scheduling [15] among others.

Unfortunately, like max-cut, max-bisection is a computationally challenging
problem. To solve the problem, a number of exact and heuristic procedures
have been reported in the literature. Examples of exact algorithms based on
branch-and-cut and semidefinite programming are described in [5] and [21]. But
due to the high computational complexity of the problem, only instances with
no more than a few hundred of vertices can be solved by these exact methods
in a reasonable computing time.

For large instances, heuristic methods are commonly used to find sub-optimal
solutions of good quality within an acceptable time frame. In particular, for the
very popular max-cut problem, many heuristic algorithms have been proposed,
including simulated annealing and tabu search [1], breakout local search [4],
projected gradient approach [6], discrete dynamic convexized method [24], rank-
2 relaxation heuristic [7], variable neighborhood search [16], greedy heuristics
[20], scatter search [30], global equilibrium search [35, 36], unconstrained binary
quadratic optimization [38] and memetic search [39]. On the other hand, un-
like the intensively investigated max-cut problem, there are only few heuristics
for the max-bisection problem including in particular a Lagrangian net algo-
rithm [41], a deterministic annealing algorithm [12], a variable neighborhood
search algorithm [26] and three recent memetic algorithms [25, 40, 42]. These
memetic algorithms have produced the best computational results on a set of
max-bisection benchmark instances and were used as the main references for
our comparative studies.

In this study, we introduce an effective heuristic algorithm for the max-
bisection problem based on the iterated local search (ILS) framework [28], which
has been applied with success to a number of difficult combinatorial optimiza-
tion problems (for some recent application examples, see [4, 10, 33, 34, 37]).
The proposed iterated tabu search (ITS) algorithm relies on two distinct lo-
cal search operators for solution transformations. The algorithm is composed
of three complementary search phases (descent-based improvement, diversify-
ing improvement and perturbation) to ensure an effective examination of the
search space. The basic idea of the proposed approach can be summarized as
follows. Using the fast I-move operator (Section 2.3), the descent-based im-
provement procedure aims to locate a local optimum from an initial solution



(Section 2.6). Then the diversifying improvement phase applies a tabu search
procedure (with the I-move and constrained swap operators) to examine nearby
search areas around the obtained local optimum to discover improved solutions
(Section 2.7). Each time that an improved solution is found, the search switches
back to the descent-based improvement phase to make an intensive exploitation
of the area. If the search stagnates, the perturbation phase applies a random
search operator to definitively move the search process to a distant region from
which a new round of the search procedure starts. This process is iterated un-
til a stopping condition is met. To ensure the computational efficiency of the
search operators, we employ streamlining techniques based on dedicated data
structures and tie-breaking techniques (Sections 2.4 and 2.5)

The proposed ITS algorithm includes the following original features. First,
ITS relies on a joint use of two complementary search operators to conduct
an extensive exploitation of the search space. The I-mowe operator is used
to first discover a local optimal solution from which improved solutions are
further sought by employing the constrained swap operator. Second, in addition
to an improvement phase and a perturbation phase used in conventional ILS
algorithms, the proposed ITS algorithm uses a fast descent procedure to quickly
attain promising search areas which are intensively explored with the powerful
tabu search procedure. This combination prevents the search procedure from
running the more expensive tabu search procedure in unpromising areas and
thus helps to increase the search efficiency of the whole algorithm.

We assess the performance of the proposed algorithm based on 71 well-known
benchmark graphs in the literature which were commonly used to test max-cut
and max-bisection algorithms. Computational results show that ITS competes
favorably with respect to the existing best performing max-bisection heuristics,
by obtaining improved best-known results (new lower bounds) for 8 instances.

The remainder of the paper is organized as follows. In Section 2, we present
the proposed algorithm. Section 3 provides computational results and compar-
isons with state-of-the-art algorithms in the literature. Section 4 is dedicated
to an analysis of essential components of the proposed algorithm. Concluding
remarks are given in Section 5.

2. Iterated tabu search for max-bisection

This section presents the proposed I'TS algorithm for max-bisection. We first
introduce its general working scheme and then present in detail its components
(search space, move operators, descent procedure, tabu search procedure and
perturbation procedure).

2.1. General working scheme

The general procedure of the proposed ITS algorithm is described in Al-
gorithm 1 whose components are explained in the following subsections. The
algorithm explores the search space of bisections (Section 2.2) by alternately ap-
plying two distinct and complementary move operators (1-move and constrained



Algorithm 1 General ITS procedure for the max-bisection problem.

43:
44
45:
46:
47:

: Require: Graph G = (V, E), max number w of consecutive non-improvement iterations in diversified phase,

probability p for selecting I-move and ¢ — swap().

: Ensure: the best solution Ij.s; found

I < Random_lInitial_solution() > A random bisection from the search space (2, see Section 2.2
D Ipest <— I > Ipest records the best solution found so far
iter <— 0 > lteration counter

: while stopping condition not satisfied do

/* lines 8 to 20: Descent local search phase, see Section 2.6 */

repeat
I* « 1
I <+ I ® I-move(u, St1) > Select a vertex with the best move gain and perform the I-move
Update move gains > Move gains recorded in a bucket data structure, see Section 2.4

iter < iter + 1
I <+ I & I-move(v, S2)
Update move gains; iter <— iter + 1
until f(I) < f(I")
/* lines 17 to 20: Roll back to recover the search status when the local optimum I™ is reached */
I+ I® I-move(v, St)
Update move gains; iter <— iter + 1
I <+ I & I-move(u, S2)
Update move gains; iter < iter + 1
if f(I") > f(Ipest) then

Tpest < I > Update the best solution found so far
end if
/* lines 25 to 44: Diversifying improvement phase, see Section 2.7 */
c+0 > Counter of non-improvement iterations
while ¢ < w do
if Random(0,1) < p then > Random/(0, 1) returns a random real number between 0 to 1
I + I® c-swap(u,v) > Perform the best c-swap considering tabu status

Add {u, v} to tabu list
Update move gains; iter < iter 4+ 1
else
I <+ I & I-move(u, S1) > Perform the best I-move considering tabu status
Add w to tabu list
Update move gains; iter < iter 4+ 1
I« I ® I-move(v, S2)
Add v to tabu list
Update move gains; iter <— iter + 1
end if
if £(I) > f(Iyest) then
Tpest < I; ¢+ 0 > Update the best solution found so far
else
c+—c+1
end if
end while
/* Perturbation phase, see Section 2.8 */
I < Perturb(I)
end while




swap) to make transitions from the current solution to a neighboring solution
(Section 2.3). Basically, from an initial solution (i.e., a bisection) which is ran-
domly sampled from the search space, the algorithm first applies, with operator
1-move, a descent local search (DLS) to attain a local optimum I (Algorithm
1, lines 8-20, descent local search phase, Section 2.6). We note that, since the
last solution I from the descent local search phase is obtained from the reached
local optimum I* after two additional 1-move operations, we need to apply two
reverse I-move operations (rollback) to I to recover I* (Algorithm 1, lines 17-
20). An alternative method to achieve the same purpose would be to copy I*
to I which however requires to re-initialize the bucket data structure (Section
2.4) and thus is more expensive than the adopted rollback method.

From the attained local optimum I, the algorithm continues the search with
the diversifying improvement phase (Algorithm 1, lines 25-44, Section 2.7) that
uses a tabu search procedure to explore new solutions around I. This search
phase relies on both the I-move and constrained swap (denoted by c-swap) op-
erators, which are applied in a probabilistic way. This tabu search phase ends
when the best solution found Ip.s; cannot be further improved during w consec-
utive iterations. In this case, it is considered that an exhaustive exploration of
the search area has been performed. To continue the search, the algorithm ap-
plies a perturbation phase (Algorithm 1, line 46), which deeply transforms the
current solution by randomly swapping 7 vertices (Section 2.8). The perturbed
solution serves then as a new starting solution for the next round of the descent
local search phase. The overall process is iterated until a stopping criterion
(e.g., a given cutoff time) is met and the best solution found during the search
is returned as the outcome of the algorithm.

2.2. Search space and evaluation solution

Given the purpose of max-bisection (i.e., to partition the vertex set V into
two equal-sized subsets such that the weight sum of the edges crossing the
two subsets is maximized), we define the search space €2 to be composed of all
possible bisections (i.e., balanced two-way partitions) {S1,S2} of vertex set V
as follows.

Q= {{Sl,SQ} : Sl,SQ C V,SlUSQ = V,Sl NSy = @, ‘Sl| = |SQ‘} (2)

The objective value f(I) of a given bisection I = {57, S} of Q is the weight
sum of the edges crossing 57 and S5:

fmy=> wy (3)

i€S51,j€S2

For two candidate bisections I’ € Q and I” € Q, I’ is better than I” if and
only if f(I') > f(I"”). The goal of our algorithm is to find a solution Ipess € Q2
with f(Ipest) as large as possible. Our algorithm only samples feasible solutions
within the above search space.



2.3. Mowe operators and neighborhood

From the current solution which is necessarily a feasible solution (i.e., a bi-
section), the ITS algorithm explores its neighboring solutions by applying the
1-move and c-swap operators. Formally, we let I = {S1, S2} be the current solu-
tion and mv be a move operator, we use I’ < I & muv to denote the neighboring
solution I’ obtained by applying mv to I.

For a given move operator muv, we define the move gain A,,, as the variation
in the objective value when muv is applied to transform the current solution I
into a neighboring solution I, i.e.,

where f is the optimization objective defined in Eq. (3).
The 1-move and c-swap operators are defined as follows.

e I-move: Given a bisection I = {5, S5}, I-move(v, S;) displaces a vertex
v from its current subset S; (i = 1,2) to the other subset. We note that
one application of I-move always leads to an unbalanced partition (thus
an infeasible bisection). To maintain the balance of the partition, two
consecutive applications of 1-move are always jointly performed by moving
first a vertex u from subset S to Sy (denoted by 1-move(u, S1)), and then
by moving another vertex v from Sy to S; (denoted by I-move(v,Ss)).
Such a combined application of 1-move ensures a balanced partition (thus
a feasible bisection).

e c-swap: Given a bisection I = {S1,S2}, c-swap(vy,v2) exchanges two
vertices v; € 51 and vy € S5 belonging to two subsets subject to the
constraint that v; and vy are linked by an edge {v1,v2} € E. Thus, our
c-swap operator only considers pairs of vertices such that they not only
belong to the two subsets of the bisection, but also are linked by an edge
crossing the subsets.

Based on these two move operators (I-move and c-swap), two neighborhoods
N1 and N2 are defined as follows:

N1 ={I® 1-move(v,S;) : v € S;}
N2 ={I ® c-swap(vy,va) : v1 € S1,v2 € So,{v1,v2} € E}

where I = {57, 52} is a feasible solution. Clearly, N1 and N2 are bounded in
size by O(|V|) and O(|E|) respectively.

As stated above, since the neighboring solutions of I in N1 are infeasible,
two consecutive applications of 7-move are performed to maintain the feasibility
of the new neighboring solution. We also note that the 71-move operator was
commonly used in previous studies [17, 25, 40].

On the contrary, few studies investigate the swap operator. When it was
employed, it was usually applied in an unconstrained way in the sense that each
possible pair of vertices (v1,vs) such that v; € S and vy € Sy was considered



[23]. Note that the unconstrained swap operator leads to a neighborhood of size
O(|V|?) which is typically much larger than our N2 neighborhood induced by the
constrained c-swap operator (bounded by O(|E|) in size). This is particularly
true for sparse graphs. We will study the merit of c-swap compared to the
unconstrained swap operator in Section 4.2.

After an application of either one of the two move operators, the gain ob-
tained with regard to the objective is updated according to the dedicated stream-
lining techniques explained below.

2.4. Bucket sorting for fast move gain evaluation and updating

As we show in Sections 2.6 and 2.7, our algorithm iteratively makes transi-
tions from the current solution to a particular neighboring solution by applying
a selected move operation. Typically, to make the right choice, the algorithm
needs to identify the most favorable move operation with an increased move
gain among many candidates. To ensure a high search efficiency, it is crucial
for the algorithm to be able to rapidly evaluate all the candidate moves at each
iteration of its search process. In this section, we describe fast incremental eval-
uation techniques based on bucket sorting [11] to streamline the calculations.
These specific techniques allow the algorithm to efficiently keep and update the
move gains after each move application.

1-mowe: For each I-move(v,S) application, let A, be the move gain of
moving vertex v € S to the other subset V' \ .S (We use the notation A,_g if
the destination subset S needs to be emphasized). Then initially, each move
gain can be determined by the following Formula:

A, = Z Wy — Z W j (5)
1€S,i#v JEV\S
where w,; and w,; are respectively the weights of edges {v,i} and {v, j}.
Then, once a 1-move(v,S) is performed, the move gain of each vertex can be
updated as follows:

1. A, = —A,

2. for each u € V' \ {v},
AL - 2wy, fuelS (6)
Y Ay + 2w, ifueV\S

Now we explain where the factor 2 in Eq. (6) comes from. Let us first
consider the gain of moving a vertex u € S (u # v), whichis A, = > wy; —
1€S iFu
> wy; according to the definition of the objective function. After the vertex
jeVv\s

v is moved from S to V\S, the gain of moving vertex u is updated as A, =

Wui — E Wy = ( Z Wi — wuv) - ( Z Wy + wuv) =
i€S\{v},izu FEVASU{v} i€S,iu JEVAS

A, — 2wy,. Similarly, the gain of moving a vertex v € V\S (u # v) is given by



A, = > wyj — Y Wy After the vertex v is moved from S to V\S, the

JEVAS,j#£u i€s
gain of moving v € V\S is updated as A, = > Wyj —  », Wy =
JEV\SU{v},j#u ieS\{v}
( Z wuj"'wu’u) - (Z wui_wuv) = Ay + 2Wyy.
JEVAS,j#u i€S

We note that if there is no edge between the vertices u and v, the edge
weight w,, equals 0, in which case the associated A, value will not change.
We observe that only the move gains of vertices affected by this move (i.e., the
displaced vertex and its adjacent vertices) will be updated, which reduces the
computation time significantly.

Usually the move gains can be stored in an array, so that the time for find-
ing the best move (maximum gain) grows linearly with the number of vertices
(O(n)). For large problem instances (very large n), the required time can still
be quite high. To avoid unnecessary search for the best move, we adopt a bucket
structure which is inspired by the bucket sorting proposed in [17] for the circuit
partitioning problem (More details about bucket sorting can be found in [11]).
With this technique, we always keep the vertices ordered by their move gains in
decreasing order, so that the most favorable vertex can be identified quickly as
we explain below.

Our bucket sorting for 7-move relies on two arrays of buckets, one for each
partition subset S; € {S1,S2}. In each bucket array i, i € {1,2}, the j*
entry stores the vertices with the move gain A,_ g, currently being equal to
J, where the vertices are maintained by a circular double linked list (CDLL).
To ensure a direct access to the vertices in the CDLLs, as suggested in [17],
the algorithm also maintains another array for all vertices, where each element
points to its corresponding vertex in the CDLL. The use of a CDLL instead of
a double linked list (DLL) like in [17] aims to ease the implementation of our
tie-breaking scheme which is needed to select the vertex when several candidates
exist (see Section 2.5 for more details on this issue). An illustrative example of
the bucket structure for max-bisection is given in Appendix A.

After each I-mowe, the bucket structure is updated by recomputing the move
gains (see Formula (6)) of the affected vertices (the moved vertex and its adja-
cent vertices) and by shifting them to appropriate buckets.

We note that the bucket data structure was originally proposed and used in a
local search method developed for the circuit partitioning partitioning problem
[17]. Very recently this technique has been used to speed up a swap-based Lin-
Kernighan local search method for max-bisection within an improved memetic
algorithm [42].

2.5. Selection of the best vertex with a tie breaking scheme

For each bucket array, finding the best vertex with maximum move gain is
equivalent to finding the first non-empty bucket from the top of the array and
then selecting a vertex in its circular double linked list. If there are more than
one vertex with maximum move gain in the CDLL (see Figure A.3 in Appendix
A), a tie occurs. We observed experimentally that many ties may occur during



the runs of our ITS algorithm, which reveals the importance of a suitable tie-
breaking scheme. Three tie-breaking schemes, namely random selection, FIFO
(first-in-first-out) selection and LIFO (last-in-first-out) selection are often used.
The work of [19] showed that the LIFO selection of gain buckets was superior
to the FIFO selection and random selection. A possible explanation given by
the authors was that clustered vertices tend to move together.

In our algorithm, we use the LIFO selection scheme to break ties. However,
given that our algorithm employs a tabu mechanism to forbid a vertex to move
back to its original subset (see Section 2.7), it is inappropriate to insert the
forbidden vertices at the head of the list, since doing this will cause useless
computations when searching for a proper vertex for a move operation. To adapt
the LIFO selection scheme to tabu search, we make the following improvements.

To update the move gain of an impacted vertex after a move, ITS first
checks the tabu status of the vertex. If the vertex is in the tabu list, ITS inserts
the vertex at the tail of the corresponding gain bucket, otherwise, ITS inserts
the vertex at the head of the gain bucket. To choose the vertex for a 1-move
operation, ITS always selects the first vertex which is not in the tabu list from
the head of the gain bucket. This strategy reduces the computing time for
checking those forbidden vertices, as we show in Section 4.1.

c-swap: For each c-swap(u,v) operation, let A, , be the move gain of
exchanging vertices u and v between the two subsets of the bisection. Then
A, can be calculated by a combination of the move gains of its two underlying
1-move operations (A, and A,) as follows:

Ayo =0y + Ay + 2wy, (7)

According to the definition of the neighborhood N2, only the endpoints
(vertices) of the edges crossing the two subsets S; and Sy are considered. Thus
for a given solution, there are at most |E| candidate c-swap moves to evaluate.
Still, directly searching for the best move among all candidate moves may be
too computationally expensive. In order to mitigate this problem, we maintain
another bucket structure for c-swap moves to accelerate the move evaluation
process. The bucket structure for c-swap is similar to that for 7-move. This
is achieved by keeping an array of buckets and in each bucket, the i*" entry
stores the edge {u, v} with the move gain A, ,, currently being equal to 7, where
the edges are maintained by a circular double linked list. To ensure a direct
access to the edges in the circular double linked lists, as described above, the
algorithm also maintains another array for all edges, where each entry points to
its corresponding edge in the circular double linked lists.

Similarly, after each move, the bucket structure is updated by recomputing
the move gains (see Formula (6)) of the affected vertices (i.e., each swapped
vertex and its adjacent vertices), by shifting them to appropriate buckets.

Complexity: Each move involves searching for the vertex or a pair of ver-
tices with maximum move gain, recomputing the move gain for the affected
vertices and updating the bucket structure. The vertex with maximum move
gain can be found in constant time (O(1)). Recomputing move gains requires



linear time relative to the number of affected vertices (O(n)). The time of up-
dating the bucket structure is also only related to the number of affected vertices
bounded by (O(dmaz)) where dy,q, is the maximum degree of the graph.

2.6. Descent local search phase to locate local optima

The descent local search phase is used to obtain a local optimum from a given
starting solution [32] (see Algorithm 1, lines 8 - 20). DLS employs the 1-move
operator defined in Section 2.3 to iteratively improve the current solution until
a local optimum is reached. At each of its iterations, a best I-move (i.e., with
maximum gain) is selected by using the bucket structure described in Section 2.4
to move the associated vertex from its current subset to the other subset. If two
or more vertices have the same largest move gain, the LIFO tie-breaking strategy
described in Section 2.5 is used to choose the vertex. As explained in Section
2.3, DLS always performs two consecutive 1-mowve operations to maintain the
balance of the two subsets of the bisection.

After each combined application of two consecutive 1-move operations, if
the new objective value is better (larger) than the objective value of the former
solution, DLS continues its descent process with the newly attained solution as
its new current solution. Otherwise, DLS stops after rolling back to the solution
obtained before the application of the last two consecutive I-move operations
(see Algorithm 1, lines 17 - 20). This solution corresponds to a local optimum
with respect to the N1 neighborhood and serves as the input solution to the
diversifying improvement search presented in the next section.

2.7. Diversifying improvement phase to discover promising region

The descent local phase alone (see Section 2.6) cannot search beyond the
first local optimum it encounters. The diversifying improvement search phase,
which is based on the tabu search method [18], aims to intensify the search
around this local optimum with the purpose of discovering solutions which are
better than the input local optimum.

The diversifying improvement search procedure jointly uses the 1-move and
c-swap operators defined in Section 2.3. To apply these two operators, we
employ a probabilistic combination technique which extends the existing com-
bination schemes described in [29]. The application of I-move or c-swap is
determined probabilistically at each iteration: with probability p (a parame-
ter), c-swap is applied; with probability 1 — p, I-move is applied (see Algorithm
1, lines 25-44).

When 1-mowe is selected, the algorithm performs the combined I-move op-
erations in a way similar to that described in Section 2.6 except that here a
tabu list H is considered [18]. The tabu list is a memory which keeps track
of displaced vertices to prevent them from being moved back to their initial
subsets. Precisely, the algorithm first selects an eligible vertex (see below) with
maximum move gain and transfers it from its current subset (say Sp) to the
other subset, then it updates the bucket structure of move gains according to
the technique described in Section 2.4. Then, it selects another eligible vertex

10



in the other subset (say S3) with maximum move gain and moves it from S,
to S7. The bucket structure is updated accordingly to account for the modified
move gains.

After the transfer of a vertex v, the vertex is added to the tabu list H and
forbidden from joining again its original subset during the next H, iterations.
Parameter H, (called the tabu tenure) is determined dynamically as follows:

H, =3+ rand(|V|/10) (8)

where rand(k) is a random number from 0 to k.

A move leading to a solution better than all solutions is always performed
even if the underlying vertex is forbidden by the tabu list (This is called the
aspiration criterion in the terminology of tabu search). A vertex is said to be
eligible if it is not forbidden by the tabu list or if the aspiration criterion is
satisfied.

Similarly, when c-swap is selected, two vertices v; € S; and vy € Sy with
maximum move gain are selected subject to {v1,v2} € E. Another tabu list H¢
is maintained for c-swap. After each c-swap move, the edge {vy,vs} is added
to the tabu list H¢ and it is forbidden to swap v; and vs back to their original
subsets during the next H€ iterations, which, like for the 7-move, is dynamically
determined by formula (8). The same aspiration criterion than the one used by
1-mowe is also applied. After each c-swap move, the bucket structure is updated
to account for the modified move gains. When multiple best c-swap moves are
available, the LIFO selection strategy is used to choose the applied c-swap move
(see Section 2.4).

The tabu search procedure iteratively applies 1-mowve and c-swap to improve
the current solution. If the best solution found so far (fpes¢) cannot be improved
during a maximum number w of consecutive iterations, the search is judged to be
trapped in a deep local optimum. In this case, the perturbation phase (Section
2.8) is invoked to move the search to a distant region.

2.8. Perturbation phase for strong diversification

The diversifying improvement phase allows the search to escape from some
local optima. However, the algorithm may still get stuck in a non-promising
search area. This is the case when the best-found solution fp.s; cannot be
improved during w consecutive iterations. To help the search to move to new
search regions, we apply a simple perturbation mechanism to deeply transform
the current solution. The perturbation swaps a number of pairs of vertices in
the following way. For each swap, we randomly choose one vertex v from S; and
another vertex u from Sy, and then swap v and u. This process is repeated
times where 7y is a parameter which indicates the strength of the perturbation.
After the perturbation phase, the search returns to the descent local search
phase with the perturbed solution as its new starting solution.

11



3. Experimental results and comparisons

3.1. Benchmark instances

To assess the performance of the proposed ITS approach, we carried out in-
tensive computational experiments on 71 well-known benchmark graphs used in
previous studies. These graphs have 800 to 20000 vertices and an edge density
from 0.02% to 6%. They were generated by a machine-independent graph gen-
erator including toroidal, planar and random weighted graphs. These instances
are available from: http://www.stanford.edu/yyye/yyye/Gset or from the
authors of this paper. These well-known benchmark graphs were frequently
used to evaluate max-bisection and max-cut algorithms [4, 16, 25, 36, 35, 38,
39, 40, 41, 42].

3.2. Experimental protocol

Our ITS algorithm was programmed in C++ and compiled with GNU g++
(optimization flag 7-02”). Our computer is equipped with a Xeon E5440
(2.83GHz, 2GB RAM). When running the DIMACS machine benchmarking
program! on graphs r300.5, r400.5, and r500.5, our machine required 0.43, 2.62
and 9.85 seconds of CPU time respectively.

3.8. Parameters

The proposed algorithm requires three parameters: maximum allowed num-
ber w of non-improvement iterations, probability p for move operator selec-
tion, and number v of perturbation moves. To achieve a reasonable calibra-
tion of the parameters, we adopted the irace package [27] which implements
the Iterated F-race (IFR) method [3] and allows an automatic parameter con-
figuration. We used the following parameter value ranges for this tuning:
w = {1500, 2500, 3500, 4500, 5500}, p = [0.1,0.5],v = {50,200, 400,600}. We
performed the parameter tuning experiment on a selection of 5 representative
instances from the 71 benchmark graphs: G22, G23, G37, G55, G62. This cali-
bration experiment led to the parameter values w = 3500, p = 0.3 and v = 200,
which were used in all our experiments. Considering the stochastic nature of
our ITS algorithm, each of the 71 benchmark instance was independently solved
20 times with different random seeds. To ensure fair comparisons with other
state-of-the-art methods in Sections 3.4 and 3.5, we followed the main reference
algorithm (MA-WH) [40] and used a timeout limit as the stopping criterion of
our ITS algorithm. The timeout limit was set to 30 minutes for graphs with
[V] < 5000 and 120 minutes for graphs with [V| > 5000.

To fully evaluate the performance of the proposed algorithm, we performed
a comparison with the four recent and best performing state-of-the-art max-
bisection algorithms [25, 40, 41, 42], while the best results in the literature have
been reported in [25, 40, 42] from 2013 to 2015.

ldfmax:ftp://dimacs.rutgers.edu/pub/dsj/clique/
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8.4. Comparison with the current best-known solutions

Table 1 shows the computational results of our ITS algorithm for the 71
benchmark graphs? in comparison with the previous best-known results Jpre
reported in [25, 40, 42]. The first two columns of the table indicate the name
and number of vertices of the graphs. Columns 4 to 7 present the computational
statistics of our algorithm, where fycst and f,,q show the best and average
objective values over 20 runs, std gives the standard deviation and time(s)
indicates the average CPU time in seconds to reach fpes;.

From Table 1, we observe that ITS, evaluated under the same cutoff time
limit as the best performing reference algorithm MA-WH, is able to improve the
previous best-known results for 8 large benchmark graphs (indicated in bold)
and match the best-known results for 61 graphs. ITS obtains solution of worse
quality for only 2 instances (G57 and G70, indicated in italic). This perfor-
mance is remarkable given that the current best results were reported recently.
Moreover, the results of the proposed algorithm show small standard deviations
across different runs and different graphs, indicating a good robustness of the
algorithm.

Table 1: Computational results of the proposed ITS algorithm on the set of 71

benchmark graphs in comparison with the current best-known results f,,. reported
in three recent studies [25, 40, 42].

Instance \4 fore frest favg std  time(s)
G1 800 11624 11624 11624 0.00 1.50
G2 800 11617 11617 11617 0.00 3.24
G3 800 11621 11621 11621 0.00 1.02
G4 800 11646 11646 11646 0.00 1.77
G5 800 11631 11631 11631 0.00 0.76
G6 800 2177 2177 2177 0.00 1.50
G7 800 2002 2002 2002 0.00 0.53
G8 800 2004 2004 2004 0.00 3.50
G9 800 2052 2052 2052 0.00 1.88
G10 800 1998 1998 1998 0.00 4.99
G11 800 564 564 564 0.00 0.12
G12 800 556 556 556 0.00 0.56
G13 800 582 582 582 0.00 4.52
G14 800 3062 3062 3062 0.00 90.68
G15 800 3050 3050 3050 0.00 55.84
G16 800 3052 3052 3052 0.00 32.82
G17 800 3047 3047 3047 0.00 200.67
G18 800 992 992 992 0.00 14.50
G19 800 905 905 905 0.00 3.51
G20 800 941 941 941 0.00 1.52
G21 800 930 930 930 0.00 50.41
G22 2000 13359 13359 13355.5 5.47 432.10
G23 2000 13344 13344 13342.1 2.09 168.24
G24 2000 13336 13336 13335.0 1.67 300.75
G25 2000 13340 13340 13338.2 1.98 149.21
G26 2000 13328 13328 13327.4 1.54 433.68
G27 2000 3341 3341 3340.65 1.75 140.64
G28 2000 3298 3298 3298 0.00 198.23
G29 2000 3403 3403 3403 0.00 3.26
G30 2000 3412 3412 3412 0.00 54.22
G31 2000 3309 3309 3309 0.00 242.19
G32 2000 1410 1410 1410 0.00 425.70
G33 2000 1382 1382 1382 0.00 485.83
20ur best results are available at: http://www.info.univ-angers.fr/pub/hao/

maxbisection/ITSresults.zip.
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Table 1 — continued from previous page

Instance \4 fpre Sfvest favg std  time(s)
G34 2000 1384 1384 1384 0.00 189.27
G35 2000 7686 7686 7684.1 2.04 448.35
G36 2000 7678 7678 7676.45 2.16 634.11
G37 2000 7689 7689 7687.7 2.09 627.86
G38 2000 7688 7688 7686.5 3.04 688.32
G39 2000 2408 2408 2406.8 2.56 242.60
G40 2000 2400 2400 2398.8 3.02 354.50
G41 2000 2405 2405 2404.2 0.99 82.55
G42 2000 2481 2481 2476.8 5.85 286.18
G43 1000 6659 6659 6659 0.00 5.25
G44 1000 6650 6650 6650 0.00 2.09
G45 1000 6654 6654 6654 0.00 3.99
G46 1000 6649 6649 6649 0.00 30.12
G47 1000 6657 6657 6657 0.00 4.88
G438 3000 6000 6000 6000 0.00 0.97
G49 3000 6000 6000 6000 0.00 1.57
G50 3000 5880 5880 5880 0.00 50.64
Gb51 1000 3847 3847 3847 0.00 101.43
GbH2 1000 3851 3851 3851 0.00 98.43
Gb5H3 1000 3850 3850 3850 0.00 109.50
GbH4 1000 3851 3851 3851 0.00 177.89
G55 5000 10299 10299 10290.8 4.54 2596.84
G56 5000 4016 4016 4013.1 2.28 1926.45
G5H7 5000 3492 3490 3487.8 1.88 610.16
G5H8 5000 19276 19276 19265.9 3.18 5102.34
Gb5H9 5000 6085 6085 6074.3 2.35 4902.13
G60 7000 14186 14187 14176.5 4.01 5678.63
G61 7000 5796 5796 5780.2 5.08 4072.54
G62 7000 4866 4866 4860.1 2.69 1472.10
G63 7000 26977 26988 26985.3 1.18 2256.66
G64 7000 8731 8737 8712.1 6.28 6032.55
G65 8000 5556 5556 5550.9 2.42 2350.98
G66 9000 6352 6356 6352.0 1.93 1323.15
G67 10000 6936 6938 6935.5 1.34 1023.40
G70 10000 9582 9581 9576.3 0.98 1154.32
GT72 10000 6990 6994 6992.5 0.84 1201.97
GT77 14000 9910 9918 9915.1 1.02 2013.44
G81 20000 14008 14030 14025.45 1.36 1953.23

3.5. Comparison with state-of-the-art maz-bisection algorithms

In this section, we further evaluate the performance of the proposed algo-
rithm by comparing it with the four best performing algorithms that achieved
state-of-art performances.

1. A Lagrangian net algorithm (LNA) (2011) [41] integrating the discrete
Hopfield neural network and the penalty function method (relaxing the
bisection constraint in the objective function). The reported results of
LNA were obtained on a PC with a 2.36GHz CPU and 1.96GB RAM. The
algorithm was programmed in Matlab 7.4. The exact stopping conditions
were not explicitly provided.

2. A memetic algorithm (MA-WH) (2013) [40] combining a grouping crossover
operator with a tabu search procedure. The results reported in the paper
were obtained on a PC with a 2.83GHz Intel Xeon E5440 CPU and 2.0GB
RAM (the same platform was used in our study). The program was coded
in C. MA-WH used, as its stopping condition, a cutoff limit of 30 minutes
for graphs with |[V| < 5000 and 120 minutes for graphs with |V| > 5000.
We also used the same stopping criterion in our ITS algorithm.

3. Another memetic algorithm (MA-LZ) (2014) [25] integrating a grouping
crossover operator and an improved local search procedure based on the
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FM heuristic proposed in [17]. The reported results of MA-LZ were ob-
tained on a PC with a 2.11GHz AMD CPU and 1.0GB RAM. The al-
gorithm was programmed in C++. MA-LZ used the following stopping
conditions: when the current best solution was not improved after 500
consecutive generations or when MA-LZ reached the maximum number of
5000 generations.

4. A recent memetic algorithm (MA-ZLL) (2015) [42] which is an improve-
ment of the MA-LZ algorithm [25]. In particular, MA-ZLL is based on
a fast modified Lin-Kernighan local search using bucket-sort and a new
population updating function. The reported results of MA-ZLL were ob-
tained on a PC with an Intel(R) Core (TM)2 Duo CPU E7500 (2.93GHz)
and 2.0G RAM under Windows XP. The algorithm was programmed in
C. MA-ZLL used the following stopping conditions: when the current best
solution was not improved after 3000 consecutive generations or when the
algorithm reached the maximum number of 10,000 generations.

Both the MA-WH algorithm and our I'TS algorithm used the same comput-
ing platform while LNA, MA-LZ and MA-ZLL were run on different computing
platforms. In order to compare the computing time, we measured the differ-
ences among the four computing platforms according to the Standard Perfor-
mance Evaluation Cooperation (SPEC) (www.spec.org), which indicated that
the computers used by LNA, MA-LZ and MA-ZLL are respectively 1.2, 1.4 and
0.966 times slower than the computer used in our experiments.

Table 2 shows the comparative results of ITS on the whole set of 71 bench-
mark graphs with respect to the four reference algorithms LNA, MA-WH, MA-
LZ and MA-ZLL. For each reference algorithm, we report the best objective
values (fpest), the CPU times (time) in seconds to attain the best objective
values (fpest), and the differences (gap) between each reference algorithm and
our ITS algorithm (a negative value thus indicates a worse result). As men-
tioned above, to harmonize the computing times, we divided the times of LNA,
MA-LZ and MA-ZLL by the factor provided by SPEC, i.e., 1.2, 1.4 and 0.966
respectively. The last two columns reporting the results of our ITS algorithm
are extracted from Table 1. The entries marked as ”-” in the table indicate that
the results are not available for the algorithm.

From Table 2, we first observe that the I'TS algorithm performs the best in
terms of the best objective values. Specifically, ITS dominates LNA for all the
tested instances. Compared to MA-LZ, ITS performs better for 61 instances
and obtains equal results for the remaining 10 instances. Compared to the most
recent algorithm MA-ZLL, ITS obtains better, equal and worse solutions for
31, 38 and 2 instances respectively. Compared to the main reference algorithm
MA-WH, ITS reaches a larger fpes: objective value for 10 instances and an
equal objective value for the other 61 instances. In terms of the computational
time, it is not obvious to make a fair comparison given that the competing
algorithms obtains solutions of quite different quality. This is particularly true
for LNA and MA-LZ which are the worst and second worst in terms of solution
quality. With regard to the main reference MA-WH (which was run on the same
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computing platform than ITS), I'TS produces solutions of equal or better quality
for similar computation times on large instances. Moreover, Table 3 reports the
computation times required by ITS to produce solutions of the same quality
than MA-WH on the 12 largest instances with 7000 to 20000 vertices. The
table shows that ITS is much faster for these large instances (except G61). For
6 instances, ITS is even 10 to 20 times faster. Finally, we observe that the
MA-ZLL algorithm scales better than ITS to obtain solutions of equal quality.

ITS has a similar computing performance to obtain solutions of equal or
better quality for large instances. Moreover, in Table 3 we show time information
of ITS to obtain solutions of the same quality as MA-WH for the 12 largest
instances with 7000 to 20000 vertices. The table shows that ITS is much faster
for these large instances (except G61). For 6 instances, ITS is even 10 to 20
times faster. Finally, we observe the latest MA-ZLL algorithm scales better
than ITS to obtain solutions of equal quality.

3.6. Comparison with a state-of-the-art algorithm for minimum bisection

Given an unweighted graph G = (V, E), where |V] is even, the minimum
bisection problem (or graph bisection) involves finding a partition of the vertices
of V into two disjoint subsets S; and Ss of equal cardinality while minimizing
the number of cutting edges {u,v} € E such that u € S; and v € S3. The
minimum bisection problem can be solved by the ITS algorithm proposed in
this paper. In fact, for the given unweighted graph G = (V, E), we can create
a weighted graph G’ = (V, E) where each edge has a weight value of -1. Then
the objective value of the maximum bisection problem of G’ multiplied by -
1 corresponds to the objective value of the minimum bisection problem of G.
Consequently, to solve the minimum bisection problem, we can run our ITS
algorithm on the weighted graph G’ and return the resulting objective value
multiplied by —1.

To test the performance of our ITS algorithm on minimum bisection, we
carried out a comparative study with a very recent and powerful exact algorithm
specifically designed for this problem [13]. This study was based on 3 sets of
benchmarks with a total of 20 graphs used in the reference paper, including
CG-Mesh graphs (meshes representing various objects), SteinLib graphs (sparse
benchmark instances for the Steiner problem in graphs) and Walshaw graphs
(mostly finite-element meshes). We did not test all the graphs used in [13] given
that the current implementation of the ITS algorithm does not allow us to solve
very large graphs with more than 70,000 vertices.
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Table 2: Comparative results of ITS with four state-of-the-art algorithms: LNA [41], MA-LZ [25],
MA-WH [40] and MA-ZLL [42].

Instance 4 LNA [41] MA-LZ [25] MA-WH[40] MA-ZLL [42] ITS

Fpest time(s) gap Frest time(s) gap fpest  time(s) gap fpest  time(s)  gap Foest time(s)
G1 800 11490 22.22  -134 11624 13.38 0 11624 2.4 0 11624 2.79 0 11624 1.5
G2 800 11505 21.95  -112 11617 11.66 0 11617 5.2 0 11617 6.45 0 11617 3.24
a3 800 11511 21.95  -110 11621 14.77 0 11621 1.32 0 11621 3.11 0 11621 1.02
G4 800 11554 22.04 -92 11641 16.29 -5 11646 1.77 0 11646 5.46 0 11646 1.77
a5 800 11521 21.8  -110 11630 14.3 -1 11631 0.88 0 11631 7.69 0 11631 0.76
[el] 800 2037 22.08  -140 2177 10.35 0 2177 1.16 0 2177 3.11 0 2177 1.5
ar 800 1889 22 -113 2000 14.72 -2 2002 0.82 0 2002 12.56 0 2002 0.53
G8 800 1873 21.94  -131 2001 16.66 -3 2004 4.26 0 2004 12.56 0 2004 3.5
Go 800 1907 21.86  -145 2046 11.94 -6 2052 1.19 0 2052 7.30 0 2052 1.88
G10 800 1875 21.96  -123 1998 14.99 0 1998 5.59 0 1998 14.04 0 1998 4.99
G11 800 560 3.18 -4 564 11.67 0 564 12.1 0 564 1.70 0 564 0.12
G12 800 546 3.17 -10 554 11.29 -2 556 11.54 0 556 1.08 0 556 0.56
G13 800 572 3.17 -10 578 11.12 -4 582 32.52 0 580 1.12 -2 582 4.52
G14 800 3023 7.02 -39 3058 17.76 -4 3062 799 0 3062 9.75 0 3062 90.68
G15 800 2996 7.01 -54 3049 15.2 -1 3050 692.96 0 3050 8.35 0 3050 55.84
G16 800 2994 7.02 -58 3047 15.83 -5 3052 82.82 0 3052 4.59 0 3052 32.82
G17 800 2097 6.99 -50 3043 17.16 -4 3047 778.67 0 3047 4.98 0 3047 200.67
G18 800 909 7.03 -83 991 10.82 -1 992 16.36 0 992 2.71 0 992 14.5
G19 800 823 7 -82 905 8.59 0 205 40.31 0 904 2.00 -1 905 3.51
G20 800 865 6.98 -76 941 6.09 0 941 2.48 0 941 0.79 0 941 1.52
G21 800 849 6.98 -81 930 9.97 0 930 34.71 0 930 2.43 0 930 50.41
G22 2000 13105 57.48  -254 13346 25.97 -13 13359 303.2 0 13359 14.83 0 13359 432.1
G23 2000 13120 57.36  -224 13319 27.67 -25 13344 132.13 0 13342 17.22 -2 13344 168.24
G24 2000 13115 57.34  -221 13322 25.87 -14 13336 102.75 0 13334 19.26 -2 13336 300.75
G25 2000 13125 57.41  -215 13314 26.36 -26 13340 308.51 0 13338 16.98 -2 13340 149.21
G26 2000 13160 57.25  -168 13300 27.64 28 13328 366.09 0 13328 22.56 0 13328 433.68
G27 2000 3109 57.16  -232 3317 26.74 -24 3341 109.49 0 3335 13.95 -6 3341 140.64
G28 2000 3063 58.13  -235 3289 26.96 -9 3208 217.84 0 3297 10.85 -1 3208 198.23
G29 2000 3179 58.06  -224 3376 26.54 -27 3403 1.36 0 3402 8.86 -1 3403 3.26
G30 2000 3139 58.18  -273 3397 26.11 -15 3412 44.82 0 3412 15.21 0 3412 54.22
G31 2000 3092 58.13  -217 3296 25.43 -13 3309 263.21 0 3308 16.54 -1 3309 242.19
G32 2000 1382 16.88 -28 1410 61.07 0 1410 887.5 0 1410 5.69 0 1410 425.7
a33 2000 1344 17.01 -38 1378 59.8 -4 1382 856.8 0 1380 6.45 -2 1382 485.83
G34 2000 1350 16.88 -34 1382 52.09 -2 1384 536.12 0 1384 5.89 0 1384 189.27
G35 2000 7548 39.22  -138 7659 34.26 -27 7686 1312.42 0 7684 24.62 -2 7686 448.35
G36 2000 7530 39.08  -148 7655 33.79 -23 7678 1259.1 0 7674 33.69 -4 7678 634.11
Ga7 2000 7541 39.21  -148 7669 33.86 -20 7689 1543.36 0 7683 41.48 -6 7689 627.86
G38 2000 7537 39.23  -151 7662 34.63 -26 7688 922.66 0 7688 29.44 0 7688 688.32
G39 2000 2255 40.11  -153 2382 23.11 -26 2408 976.95 0 2408 21.64 0 2408 242.6
G40 2000 2189 40  -211 2386 24.82 -14 2400 1198.28 0 2399 13.34 -1 2400 354.5
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Table 2 — continued from previous page

Instance V] LNA [41] MA-LZ [25] MA-WH [40] MA-ZLL [42] ITS

Fhest time(s) gap Fhest time(s) gap Frest time(s) gap Foest time(s) gap Frest time(s)
G4a1 2000 2234 40.03  -171 2383 25.78 -22 2405 546.57 0 2405 16.64 0 2405 82.55
G42 2000 2290 40.11  -191 2456 26.74 -25 2481 1513.96 0 2481 15.49 0 2481 286.18
G43 1000 6580 15.34 -79 - - - 6659 1.25 0 6659 5.15 0 6659 5.25
G44 1000 6548 15.33  -102 - - - 6650 1.18 0 6650 7.75 0 6650 2.09
G45 1000 6513 15.33  -141 - - - 6654 4.23 0 6654 4.91 0 6654 3.99
G46 1000 6538 15.33  -111 - - - 6649 10.48 0 6649 7.74 0 6649 30.12
Gar 1000 6529 15.34  -128 - - - 6657 5.97 0 6657 4.72 0 6657 4.88
G4as 3000 - - - - - - 6000 1.42 0 6000 0.02 0 6000 0.97
G49 3000 - - - - - - 6000 1.28 0 6000 0.02 0 6000 1.57
G50 3000 - - - - - - 5880 33.89 0 5880 0.03 0 5880 50.64
as1 1000 3773 10.58 -74 - - - 3847 292.6 0 3847 6.37 0 3847 101.43
G52 1000 3788 10.61 -63 - - - 3851 814.96 0 3849 9.76 -2 3851 98.43
Gs53 1000 3784 10.6 -66 - - - 3850 516.28 0 3848 8.60 -2 3850 109.5
G54 1000 3789 10.63 -62 - - - 3851 551.51 0 3849 7.91 -2 3851 177.89
G55 5000 - - - - - - 10299 2396.84 0 10281 37.77 -18 10299 2596.84
G56 5000 - - - - - - 1016 1886.98 0 3994 37.10 -22 4016 1926.45
Gs57 5000 - - - - - - 3488 4883.34 -2 3492 51.52 2 3490 610.16
Gs58 5000 18931 268.71  -345 19213 120.67 -63 19276 4276.67 0 19243 72.85 -33 19276 5102.34
G59 5000 5578 260.91  -507 5978 88.69  -107 6085 4446.16 0 6053 65.39 -32 6085 4902.13
G60 7000 - - - - - - 14186 5508.45 0 14156 90.92 -31 14187 5678.63
a6l 7000 - - - - - - 5796 3755.71 0 5752 71.20 -44 5796 4072.54
G62 7000 - - - - - - 4866 4652 0 4866 86.29 0 4866 1472.1
G63 7000 - - - - - - 26754 5670.3  -234 26977 129.57 .11 26988 2256.66
G64 7000 - - - - - - 8731 5793.56 -6 8697 131.66 -40 8737 6032.55
a6s5 8000 5418 290.72  -138 5534 463.44 -22 5556 5385.86 0 5554 86.70 -2 5556 2350.98
G66 9000 6194 391.03  -162 6324 850.69 -32 6352 6267.15 -4 6352 120.44 -4 6356 1323.15
Ge67 10000 6782 512.62  -156 6912 797.09 -26 6934 6203.44 -4 6936 74.49 -2 6938 1023.4
G70 10000 - - - - - - 9580 7032.7 -1 9582 53.99 1 9581 1154.32
ar72 10000 - - - - - - 6990 7046.03 -4 6990 126.36 -4 6994 1201.97
a7 14000 - - - - - - 9900 6752.26 -18 9910 186.29 -8 9918 2013.44
a8l 20000 - - - - - - 13978 7023.49 -52 14008 321.50 -22 14030 1953.23




Table 3: ITS needs much less time to attain the best objectives of the current best performing
MA-WH algorithm [40] on the 12 largest instances with 7000 to 20000 vertices.

Instance MA-WH [40] ITS

fvest  time(s) time(s)
G60 14186 5508.45 5678.63
G61 5796 3755.71 4072.54
G62 4866 4652.00 1472.1
G63 26754 5670.30 238.16
G64 8731 5793.56 5532.55
G65 5556 5385.86 2350.98
G66 6352 6267.15 930.15
G67 6934 6203.44 1223.4
GT70 9580 7032.70 1154.32
GT72 6990 7046.03 970.92
GT77 9900 6752.26 530.71
G81 13978 7023.49 486.70

We performed 10 independent runs of our ITS algorithm to solve each tested
graph within a cutoff time limit of 3600 seconds and terminated each run once
the best-known result was found. We used the same parameter settings as in
the previous sections. For brevity purposes, we only summarize the main find-
ings obtained from this experiment in the following. Our ITS algorithm was
able to obtain the optimal solutions for the Walshaw and CG-Mesh graphs. In
particular, for the CG-Mesh graphs, ITS reached the optimal solutions with
computing times 5 to 10 times shorter than the time needed by the exact al-
gorithm to complete its search. On the other hand, ITS failed to reach the
optimal solutions for large SteinLib graphs. An interesting observation is that
ITS performs well for graphs with a large minimum bisection value while the
exact algorithm performs well for graphs with a small minimum bisection value
(the latter was put forward in [13]). In this sense, we can consider that both
algorithms may complement each other and can address graphs with different
characteristics. The inferiority of ITS on graphs with small minimum bisection
values is partly attributed to the ineffectiveness of the c-swap operator for this
type of special graphs. Essentially, the c-swap operator only concentrates on
swapping cutting edges, which proved to be effective for the graphs used to
benchmark max-bisection algorithms, but becomes inefficient when the cutting
edges are very limited as it is the case for the SteinLib graphs. Finally, we
note that even if minimum bisection and maximum bisection are two different
problems, both problems can be solved in the same way by the ITS algorithm.

4. Discussion

In this section, we investigate the roles of two important components of
the ITS algorithm: the Last In First Out (LIFO) tie breaking strategy based
on bucket sorting and the combined neighborhood using 7-move and c-swap.
The experiments of this section were based on a selection of 17 challenging
instances while the tested I'TS variants used the same stopping conditions as in
the previous experiments.
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4.1. Impact of the bucket-sorting based tie breaking strategies

The adopted bucket sorting is a crucial data structure to the effectiveness
of the proposed algorithm, in particular to the LIFO tie breaking strategy. Re-
call that each bucket in the bucket array generally includes multiple vertices
(organized into a circular double linked list) which lead to the same move gain.
Apparently, no difference occurs among vertices in the same bucket. However,
we assume that potential connections among vertices exist and the order of ver-
tices being inserted into a bucket is worthy of a careful consideration. Based on
this assumption, we proposed an improved LIFO insertion strategy (see Section
2.4), where a vertex is inserted at the head of the circular double linked list
whenever its move gain is changed (i.e., its inserted position in the bucket array
is changed accordingly), to ensure that this vertex will be selected when a tie
break is required. The reason lies in the fact that if the move gain of a vertex
u is changed because of moving a vertex v, then u has a higher opportunity to
be moved during the following iterations. An exception is the insertion of tabu
vertices at the tail of the circular double linked lists in order to penalize the
recently moved vertices.

To assess the impact of bucket sorting on the performance of the ITS algo-
rithm, we tested an ITS variant without the bucket sorting structure. That is,
only a vector is kept to record the gains resulting from the 1-moves. In this case,
to identify the vertex with maximum gain, the I'TS variant has to scan the whole
vector instead of looking at the top of the bucket array. When there are more
than one vertex with maximum gain, ties are broken randomly. Table 4 (upper
part) compares the standard ITS algorithm (with the bucket sorting structure
and the LIFO tie breaking strategy, named ITS;;ro) and the ITS variant with-
out the bucket sorting structure (named ITSNo—pucket). From the results, we
observe that removing the bucket sorting structure considerably degrades the
performance of the ITS algorithm both in terms of the best and average so-
lutions. This is confirmed by a small p-value of 3.738e-05 from the Friedman
test in both cases. Moreover, compared to ITSy7ro, ITSNo—bucker generally
requires more computing time to reach its best results (which are worse than
those of ITSy o). In conclusion, the experiment demonstrates the usefulness
of the bucket sorting technique in the proposed ITS algorithm.

To further test the adopted LIFO tie breaking strategy, we compared LIFO
with the Random Strategy (Random) and the First In First Out strategy
(FIFO). The random strategy scans vertices of the same bucket in random
order, no matter if a new vertex is inserted at the head or the tail of a circular
double linked list. The FIFO strategy uses a queue structure, with the vertices
in a bucket being scanned from the head to the tail like the LIFO strategy but
with every vertex being inserted at the tail of the circular double linked list.
For this experiment, we kept all the other components of the proposed ITS
algorithm unchanged except for the tie breaking strategy.

Table 4 (lower part) reports the best objective value fpes¢ and average ob-
jective value fu,4 over 20 runs as well as the average time time to reach fpes.
From this table, we observe that the LIFO tie breaking strategy dominates the
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Table 4: Assessment of the bucket sorting structure and comparisons of the different tie-
breaking strategies

Instance ITSLiFoO ITSNo—bucket

frest fn,vg time(s) frest fa,vg time(s)
G55 10299 10290.8 2596.84 10296 10285.2 3755.78
G56 4016 4013.1 1926.45 4012 4007.9 4237.44
G57 3490 3487.8 610.16 3488 3478.2 5451.93
G58 19276 19265.9 5102.34 19272 19264.1 4759.58
G59 6085 6074.3 4902.13 6078 6063.6 4192.53
G60 14186 14176.5 5678.63 14170 14162.9 6012.47
G61 5796 5780.2 4072.54 5786 5770.4 3699.49
G62 4866 4860.1 1472.1 4860 4848.7 4275.62
G63 26988 26985.3 2256.66 26976 26967.0 5071.38
G64 8737 8712.1 6032.55 8725 8707.2 3975.71
G65 5556 5550.9 2350.98 5542 5535.6 4217.56
G66 6356 6352.0 1323.15 6345 6334.45 5274.54
G67 6938 6935.5 1023.4 6927 6920.5 4057.85
G70 9581 9576.3 1154.32 9564 9540.3 4538.75
G72 6994 6992.5 1201.97 6980 6975.2 5638.47
G771 9918 9915.1 2013.44 9890 9880.1 6972.68
G81 14030 14025.45 1953.23 13978 13950.45 7001.35
Instance ITSrrro ITSRandom

Sfrest fa'ug time(s) Sfoest favg time(s)
G55 10264 10255.6 5389.34 10294 10284.1 5560.1
G56 3989 3981.85 6883.49 4013 4009.6 5895.28
Gb7 3480 3473.2 5573.11 3488 3483.5 4560.34
G58 19243 19240.3 5991.60 19272 19261.9 6832.53
G59 6046 6041.8 7137.13 6080 6064.2 6102.8
G60 14166 14155.5 5365.37 14178 14170.4 6016.74
G61 5771 5758.3 5966.63 5789 5768.2 5319.93
G62 4852 4845.8 6084.48 4860 4857.5 6087.27
G63 26933 26914.0 5274.82 26973 26960.2 5752.03
G64 8707 8697.7 6462.01 8720 8711.5 5143.31
G65 5527 5520.4 6587.86 5544 5541.9 6136.65
G66 6341 6336.8 6728.68 6349 6340.9 7056.77
G67 6920 6914.6 5612.06 6930 6925.2 6835.17
G70 9540 9532.55 6177.37 9571 9561.1 6326.62
G72 6946 6941.7 6567.88 6985 6981.35 6964.13
G771 9876 9867.6 7139.18 9896 9888.7 6587.06
G81 13968 13955.5 5581.10 13987 13980.9 7019.52

Random and FIFO strategies both in terms of solution quality and computing
time. The superiority of the LIFO strategy can be observed in Figures 1(a)
and 1(b) where we plot the deviation of the best and average objective values
obtained by Random and FIFO from that of LIFO for each tested instance. If
the absolute value of the deviation is smaller, then the corresponding objective
value is better. From Figures 1(a) and 1(b), we observe that the deviation values
are all negative, meaning that both Random and FIFO are inferior to LIFO in
terms of the best and average objective values. In conclusion, this experiment
demonstrates the benefits of the adopted LIFO tie breaking strategy based on
bucket sorting.

4.2. Impact of the combined use of 1-move and c-swap operators

As described in Section 2.3, the ITS algorithm jointly employs the 1-move
and c-swap operators in a probabilistic way. To confirm the effectiveness of the
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combined use of these operators, we tested two ITS variants. The first variant
(denoted by ITS; move) disables c-swap and only uses I-move (i.e., by removing
lines 27-31 in Algorithm 1). The second variant (denoted by ITS -movets-swap)
just replaces c-swap by the conventional unconstrained swap operator (s-swap)
(see Section 2.3). For both variants, we kept the other ITS components un-
changed. We ran ITS (denoted by ITS . ;movetc-swap) as well as the two ITS
variants under the same experimental conditions than before on the 17 selected
instances. The results in terms of fyest, favg and time are reported in Table 5.

Table 5 indicates that the ITS algorithm with 7-move and c-swap obtains
better fyest and fqug values for each tested instance. In addition, the joint use
of 1-move and c-swap requires the shortest computation time while producing
results of much better quality. We also observe that the variant using 1-mowve
alone performs better than the variant using 7-mowve and the conventional swap.
This indicates that contrary to our fast c-swap operator, the expensive s-swap
operator is not suitable here due to the high time complexity needed to explore
the induced neighborhood of quadratic size O(|V|?). Furthermore, Figures 2(a)
and 2(b) show respectively the best and average deviations with 1-move from the
corresponding objective values with 1-move + c-swap, which clearly confirm the
merit of the joint use of I-move and c-swap. We do not provide additional figures
for the I-move + s-swap variant, but the observations made for the I1-mowve
variant hold as well. Moreover, Friedman statistical tests confirm that ITS with
1-move + c-swap performs significantly better than the two other ITS variants
in terms of best and average solution values. This experiment demonstrates
the contribution of the constrained c-swap operator to the performance of the
proposed ITS algorithm.

Table 5: Computational comparisons of the I'TS algorithm using the 1-move operator and the
constrained swap operator (c-swap) with an I'TS variant using 7-move alone and another ITS
variant using I-move and the conventional unconstrained swap operator (s-swap)

Instance ITS 1-move+ c-swap ITS 1-move ITS 1 move+s-swap

frest favg ti"”e(s) frest fa'ug ti""e(s) frest favg time(s)
G55 10299 10290.8 2596.84 10292 10283.5 6192.26 10254 10231.45 6587.15
G56 4016 4013.1 1926.45 4012 4007.4 5595.33 4008 3988.9 5697.57
G5H7 3490 3487.8 610.16 3485 3481.5 5013.16 3466 3460.4 4989.16
G58 19276 19265.9 5102.34 19262 19255.25 6382.23 19190 19175.55 7014.74
Gb59 6085 6074.3 4902.13 6076 6069.1 4637.32 6043 6030.7 6910.92
G60 14186 14176.5 5678.63 14170 14163.0 5435.35 14101 14079.3 6514.35
G61 5796 5780.2 4072.54 5778 5767.3 6816.18 5709 5684.35 5638.13
G62 4866 4860.1 1472.1 4861 4853.3 4267.49 4821 4810.1 4968.75
G63 26988 26985.3 2256.66 26979 26965.1 4758.43 26910 26803.3 5017.68
G64 8737 8712.1 6032.55 8723 8710.75 6026.28 8705 8692.1 6987.14
G65 5556 5550.9 2350.98 5550 5543.2 5472.34 5318 5301.8 6541.25
G66 6356 6352.0 1323.15 6349 6339.1 5262.37 6036 6012.2 5746.28
G67 6938 6935.5 1023.4 6933 6924.0 6465.22 6714 6683.4 6357.17
G70 9581 9576.3 1154.32 9541 9534.6 4785.42 9013 8981.3 7104.38
G72 6994 6992.5 1201.97 6979 6972.7 6679.44 6034 5986.45 6879.32
G771 9918 9915.1 2013.44 9900 9889.6 6944.30 9062 9013.4 6245.84
G81 14030 14025.45 1953.23 14003 13985.5 7004.45 12002 11946.45 7008.46
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Figure 2: Analysis of the combined use of the I-move operator and the constrained swap
(c-swap) operator

5. Conclusion and perspectives

The iterated tabu search algorithm designed for the maximum bisection
problem achieved a high performance level by including two distinct search
operators which are applied in three search phases. The descent-based improve-
ment phase uses the vertex move operator (I-move) to discover a first local
optimum from a starting solution. The diversifying improvement phase jointly
employs the I-move operator and the constrained swap operator in a prob-
abilistic way (under the tabu search framework) to discover better solutions.
The perturbation phase is applied as a means to achieve strong diversification
to get out of deep local optimum traps. To obtain an efficient implementation
of the proposed algorithm, we developed streamlining techniques and a LIFO
tie-breaking strategy based on dedicated bucket data structures.

Experimental assessments on the set of 71 well-known benchmark instances
with up to 20,000 vertices indicated that the proposed algorithm was able to
obtain improved best results (new lower bounds) for 8 large instances and match
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the best-known results for 61 instances. Comparisons with state-of-the-art al-
gorithms showed that the ITS algorithm is competitive and dominates the ref-
erence algorithms in terms of solution quality. We also showed the interest of
ITS to solve the related minimum bisection problem. Finally, we observe that
the proposed ITS framework can be adapted conveniently to the maximum cut
problem for which the combined application of two consecutive I-move opera-
tions, which is necessary to ensure balanced bisections for max-bisection is no
longer required.

From the work presented in this paper, several perspectives can be contem-
plated for future studies. First, from the point of view of solution methods, it is
known that hybrid approaches can lead to improved results compared with local
search based single trajectory approaches. Thus, the proposed ITS algorithm
can be advantageously integrated into a population-based memetic algorithm as
its key local optimization procedure. For this, it would be necessary to seek a
dedicated recombination operator able to generate promising offspring solutions
from existing solutions. Second, the existing exact algorithms for the maximum
bisection problem can only be applied to solve problems of moderate sizes (i.e.,
with up to a few hundreds of vertices). Thus there is a need to develop more pow-
erful exact algorithms able to solve larger problems. For this purpose, the ITS
algorithm can be used to compute high-quality lower bounds that can be used
to better prune the search tree. In addition, most ideas of the ITS algorithm
are general. As a result, they could be adapted to design effective heuristics
for other graph partitioning problems. Finally, designing effective strategies for
handling large sparse graphs is another interesting research direction.
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Appendix A. An example of the bucket structure

Fig. A.3 shows an illustrative example of the bucket structure for max-
bisection. The graph (Fig. A.3, left) has 8 vertices belonging to the two subsets
Sy and Sy (edge weights are supposed to be equal to 1). The bucket structure
for this graph is shown in Fig. A.3 (right). One observes that the gain of moving
vertex ¢ or h to subset S; equals 0, then those two vertices are stored in the
entry of By with index 0. Notice that vertices ¢ and h are managed as a circular
double linked list. The array AI shown at the bottom of Fig. A.3 manages
position indexes for all vertices. For simplicity, we do not show all the links in
the figure.

Bucket Array for S; Bucket Array for S,
(By) (B2)
Lhound Ebound
3 3
2 2
gmax— 1 ] £ fohead gmao 1 3 b o d fohead
0 head 0
-1 -1
-2 k—head -2
-3 -3
~Zbound ~8bound

‘..|..|..‘..\’T(.‘..‘..4..‘
a b ¢ d e f g h
Array of vertices index (Al)

Figure A.3: An example of bucket structure for max-bisection
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